Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Competitive binding of musclin to natriuretic peptide receptor 3 with atrial natriuretic peptide.

Musclin is a novel skeletal muscle-derived secretory factor that was isolated by our group. Musclin contains a region homologous to natriuretic peptides (NPs). This study investigated the interaction between musclin and NP receptors (NPRs). Musclin specifically bound to NPR3, but not to NPR1 or NPR2. Musclin and atrial natriuretic peptide (ANP) competed for binding to NPR3. We conducted binding assays using various synthetic musclin peptides and mutant musclin proteins. The first NP-homologous region in musclin ((88)LDRL(91)) and the second homologous region ((117)MDRI(120)) were responsible cooperatively for high-affinity binding to NPR3. The first NP-homologous region was more importantly associated with binding to NPR3, than the second homologous region. The competitive nature of musclin with ANP for the natriuretic clearance receptor NPR3 was also confirmed in vivo. We conclude that musclin binds to NPR3 competitively with ANP and may affect ANP concentrations in a local or systemic manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app