JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells.

Circulation 2009 Februrary 18
BACKGROUND: Decreased endothelial nitric oxide (NO) synthase (eNOS) activity and NO production are critical contributors to the endothelial dysfunction and vascular complications observed in many diseases, including diabetes mellitus. Extracellular nucleotides activate eNOS and increase NO generation; however, the mechanism of this observation is not fully clarified.

METHODS AND RESULTS: To elucidate the signaling pathway(s) leading to nucleotide-mediated eNOS phosphorylation at Ser-1177, human umbilical vein endothelial cells were treated with several nucleotides, including ATP, UTP, and ADP, in the presence or absence of selective inhibitors. These experiments identified P2Y1, P2Y2, and possibly P2Y4 as the purinergic receptors involved in eNOS phosphorylation and demonstrated that this process was adenosine independent. Nucleotide-induced eNOS phosphorylation and activity were inhibited by BAPTA-AM (an intracellular free calcium chelator), rottlerin (a protein kinase Cdelta inhibitor), and protein kinase Cdelta siRNA. In contrast, blockade of AMP-activated protein kinase, calcium/calmodulin-dependent kinase II, calcium/calmodulin-dependent kinase kinase, serine/threonine protein kinase B, protein kinase A, extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase did not affect nucleotide-mediated eNOS phosphorylation.

CONCLUSIONS: The present study indicates that extracellular nucleotide-mediated eNOS phosphorylation is calcium and protein kinase Cdelta dependent. This newly identified signaling pathway opens new therapeutic avenues for the treatment of endothelial dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app