Add like
Add dislike
Add to saved papers

Elastic properties and mechanical stability of chiral and filled viral capsids.

The elasticity and mechanical stability of empty and filled viral capsids under external force loading are studied in a combined analytical and numerical approach. We analyze the influence of capsid structure and chirality on the mechanical properties. We find that generally skew shells have lower stretching energy. For large Föppl-von Kármán numbers gamma (gamma approximately 10(5)), skew structures are stiffer in their elastic response than nonchiral ones. The discrete structure of the capsules not only leads to buckling for large gamma but also influences the breakage behavior of capsules below the buckling threshold: the rupture force shows a gamma1/4 scaling rather than a gamma1/2 scaling as expected from our analytical results for continuous shells. Filled viral capsids are exposed to internal anisotropic pressure distributions arising from regularly packaged DNA coils. We analyze their influence on the elastic properties and rupture behavior and we discuss possible experimental consequences. Finally, we numerically investigate specific sets of parameters corresponding to specific phages such as phi29 and cowpea chlorotic mottle virus (CCMV). From the experimentally measured spring constants we make predictions about specific material parameters (such as bending rigidity and Young's modulus) for both empty and filled capsids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app