Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

[Effect of sulfur dioxide on pulmonary vascular structure of hypoxic pulmonary hypertensive rats].

OBJECTIVE: Hypoxic pulmonary hypertension is an important pathophysiologic process of various cardiovascular diseases. Sulfur dioxide (SO2) was considered as a kind of toxic gas previously, but recent studies suggested that SO2 could act as a key bioactive molecule in the pathogenesis of cardiovascular diseases. Therefore, this study was designed to examine the effect of sulfur dioxide on pulmonary vascular structure of hypoxic pulmonary hypertensive rats treated with SO2 donor substances.

METHODS: The rats were randomly divided into 3 groups: control group(n = 8), hypoxic group(n = 8) and hypoxic + SO2 group (n = 10, treated with SO2 donor Na2SO3/NaHSO3). The rats of hypoxic group and hypoxic + SO2 group were under a hypoxic condition for 21 days, while the rats of control group were exposed to room air. The mean pulmonary artery pressure was tested by means of right cardiac catheterization and the content of SO2 in plasma was investigated by high performance liquid chromatography (HPLC). The change in relative medial thickness (RMT) of pulmonary arteries was examined under optical microscope. The ultra-structural changes were observed under a transmission electron microscope. The data were analyzed through one-way analysis of variance (ANOVA) by SPSS 13.0 software.

RESULTS: Compared with control group [(2.25 +/- 0.50) kPa], the mean pulmonary artery pressure of hypoxic group [(5.12 +/- 0.51) kPa] raised significantly (t = 5.091, P < 0.01) and RMT of hypoxic group (9.66 +/- 1.27) compared with control group (6.83 +/- 1.57) significantly raised (t = 3.392, P < 0.01). Ultrastructural observation showed the proliferation and degeneration of endothelial cells in small pulmonary arteries in rats with pulmonary hypertension. The internal elastic lamina was irregular. The proliferation of medial smooth muscle cells of arteries was shown at the level of respiratory bronchioles. The collagens also increased. Meanwhile, compared with control group [(33.36 +/- 5.62) micromol/L], the content of SO2 in plasma of hypoxic group [(27.01 +/- 4.17) micromol/L] declined (t = 2.067, P < 0.05). Whereas compared with that of hypoxic group [(5.12 +/- 0.51) kPa], the mean pulmonary artery pressure of hypoxic + SO2 group [(3.94 +/- 0.33) kPa] declined (t = 2.712, P < 0.01) and RMT of hypoxic + SO2 group (6.97 +/- 1.83) decreased compared with hypoxic group (9.66 +/- 1.27) (t = 3.009, P < 0.01). Compared with those of hypoxic group, the pulmonary artery ultrastructural changes in hypoxic group ameliorated obviously after using exogenous sulfur dioxide donor. The endothelial cells became flat and the smooth muscle cells of arteries slightly enlarged and arranged regularly. At the same time, compared with hypoxic group [(27.01 +/- 4.17) micromol/L], the content of SO2 in plasma of hypoxic + SO2 group [(29.89 +/- 4.52) micromol/L] raised (t = 1.263, P > 0.05).

CONCLUSION: Sulfur dioxide plays an important role in the regulation of small pulmonary artery structural changes in hypoxic pulmonary hypertensive rats. The hypoxic pulmonary hypertensive damages can be ameliorated significantly after using exogenous SO2 donor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app