Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Inherently superoleophobic nanocomposite coatings by spray atomization.

Nano Letters 2009 January
We describe a technique to fabricate, for the first time, superoleophobic coatings by spray casting nanoparticle-polymer suspensions. The method involves the use of ZnO nanoparticles blended with a waterborne perfluoroacrylic polymer emulsion using cosolvents. Acetone is shown to be an effective compatibilizing cosolvent to produce self-assembling nanocomposite slurries that form hierarchical nanotextured morphology upon curing. Fabricated coating surface morphology is investigated with an environmental scanning electron microscope (ESEM), and surface wettability is characterized by static and dynamic contact angle measurements. The coatings can be applied to large and/or flexible substrates by spray coating with ease and require no additional surface treatments of commonly used hydrophobic molecules such as fluorosilanes; i.e., the nanocomposites are inherently superoleophobic. The superoleophobic nature of the coatings is also discussed within the framework of Cassie-Baxter and Wenzel wetting theories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app