Add like
Add dislike
Add to saved papers

Examining the endogenous antioxidant response through immunofluorescent analysis of Nrf2 in tissue.

As organisms designed to depend upon oxygen to sustain life, humans are necessarily and continually exposed to damaging oxidizing agents. As a vital protective measure, oxygen-dependent organisms have developed a highly evolutionarily conserved mechanism for preventing oxidative stress. NF-E2 (nuclear factor (erythroid-derived 2))-related factor-2 (Nrf2) is the primary regulator of this endogenous antioxidant response. Many diseases that plague human society, ranging from various cancers to neurodegenerative diseases, have oxidative stress as a component of their etiology, and thus, much disease research has focused on Nrf2, both as a potential point of biological failure and as a promising therapeutic target. As a transcription factor, Nrf2 is active only when it is nuclear, and is regulated largely by its subcellular distribution. Thus, Nrf2 protein levels and subcellular localization are both key pieces of information when studying the endogenous antioxidant response. Immunofluorescent analysis (IFA) of Nrf2 in human tissue is a particularly powerful tool in the study of Nrf2 in disease, because it allows examination of both of these regulatory mechanisms that modulate Nrf2 activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app