JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Taser X26 discharges in swine: ventricular rhythm capture is dependent on discharge vector.

Journal of Trauma 2008 December
BACKGROUND: Data from our previous studies indicate that Taser X26 stun devices can acutely alter cardiac function in swine. We hypothesized that most transcardiac discharge vectors would capture ventricular rhythm, but that other vectors, not traversing the heart, would fail to capture the ventricular rhythm.

METHODS: Using an Institutional Animal Care and Use Committee (IACUC) approved protocol, four Yorkshire pigs (25-36 kg) were anesthetized, paralyzed with succinylcholine (2 mg/kg), and then exposed to 10 second discharges from a police-issue Taser X26. For most discharges, the barbed darts were pushed manually into the skin to their full depth (12 mm) and were arranged in either transcardiac (such that a straight line connecting the darts would cross the region of the heart) or non-transcardiac vectors. A total of 11 different vectors and 22 discharge conditions were studied. For each vector, by simply rotating the cartridge 180-degrees in the gun, the primary current-emitting dart was changed and the direction of current flow during the discharge was reversed without physically moving the darts. Echocardiography and electrocardiograms (ECGs) were performed before, during, and after all discharges. p values < 0.05 were considered significant.

RESULTS: ECGs were unreadable during the discharges because of electrical interference, but echocardiography images clearly demonstrated that ventricular rhythm was captured immediately in 52.5% (31 of 59) of the discharges on the ventral surface of the animal. In each of these cases, capture of the ventricular rhythm with rapid ventricular contractions consistent with ventricular tachycardia (VT) or flutter was seen throughout the discharge. A total of 27 discharges were administered with transcardiac vectors and ventricular capture occurred in 23 of these discharges (85.2% capture rate). A total of 32 non-transcardiac discharges were administered ventrally and capture was seen in only eight of these (25% capture rate). Ventricular fibrillation (VF) was seen with two vectors, both of which were transcardiac. In the remaining animals, VT occurred postdischarge until sinus rhythm was regained spontaneously.

CONCLUSIONS: For most transcardiac vectors, Taser X26 caused immediate ventricular rhythm capture. This usually reverted spontaneously to sinus rhythm but potentially fatal VF was seen with two vectors. For some non-transcardiac vectors, capture was also seen but with a significantly (p < 0.0001) decreased incidence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app