JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hexose-6-phosphate dehydrogenase modulates the effect of inhibitors and alternative substrates of 11beta-hydroxysteroid dehydrogenase 1.

Intracellular glucocorticoid reactivation is catalyzed by 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1), which functions predominantly as a reductase in cells expressing hexose-6-phosphate dehydrogenase (H6PDH). We recently showed that the ratios of cortisone to cortisol and 7-keto- to 7-hydroxy-neurosteroids are regulated by 11beta-HSD1 and very much depend on coexpression with H6PDH, providing cosubstrate NADPH. Here, we investigated the impact of H6PDH on the modulation of 11beta-HSD1-dependent interconversion of cortisone and cortisol by inhibitors and alternative substrates. Using HEK-293 cells expressing 11beta-HSD1 or coexpressing 11beta-HSD1 and H6PDH, we observed significant differences of 11beta-HSD1 inhibition by natural and pharmaceutical compounds as well as endogenous hormone metabolites. Furthermore, we show potent and dose-dependent inhibition of 11beta-HSD1 by 7-keto-DHEA in differentiated human THP-1 macrophages and in HEK-293 cells overexpressing 11beta-HSD1 with or without H6PDH. In contrast, 7-ketocholesterol (7-KC) did not inhibit 11beta-HSD1 in HEK-293 cells, even in the presence of H6PDH, but inhibited 11beta-HSD1 reductase activity in differentiated THP-1 macrophages (IC(50) 8.1+/-0.9microM). 7-Keto-DHEA but not 7-KC inhibited 11beta-HSD1 in HEK-293 cell lysates. In conclusion, cellular factors such as H6PDH can significantly modulate the effect of inhibitors and alternative 7-oxygenated substrates on intracellular glucocorticoid availability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app