JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Airway delivery of soluble mycobacterial antigens restores protective mucosal immunity by single intramuscular plasmid DNA tuberculosis vaccination: role of proinflammatory signals in the lung.

Journal of Immunology 2008 October 16
Protection by parenteral immunization with plasmid DNA vaccines against pulmonary tuberculosis (TB) is very modest. In this study, we have investigated the underlying mechanisms for the poor mucosal protective efficacy and the avenues and mechanisms to improve the efficacy of a single i.m. immunization with a monogenic plasmid DNA TB vaccine in a murine model. We show that i.m. DNA immunization fails to elicit accumulation of Ag-specific T cells in the airway lumen despite robust T cell responses in the spleen. Such systemically activated T cells cannot be rapidly mobilized into the airway lumen upon Mycobacterium tuberculosis exposure. However, airway deposition of low doses of soluble mycobacterial Ags in previously immunized mice effectively mobilizes the systemically activated T cells into the airway lumen. A fraction of such airway luminal T cells can persist in the airway lumen, undergo quick, robust expansion and activation and provide marked immune protection upon airway M. tuberculosis exposure. Airway mucosal deposition of soluble mycobacterial Ags was found to create a tissue microenvironment rich in proinflammatory molecules including chemokines and hence conducive to T cell recruitment. Thus, in vivo neutralization of MIP-1alpha or IFN-inducible protein-10 markedly inhibited the accumulation of Ag-specific T cells in the airway lumen. Our data suggest that immunoprotective efficacy on the mucosal surface by i.m. plasmid DNA immunization could be substantially improved by simple mucosal soluble Ag inoculation and restoration of mucosal luminal T cells. Our study holds implication for the future design of DNA vaccination strategies against intracellular infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app