JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Feasibility of a multigroup deterministic solution method for three-dimensional radiotherapy dose calculations.

PURPOSE: To investigate the potential of a novel deterministic solver, Attila, for external photon beam radiotherapy dose calculations.

METHODS AND MATERIALS: Two hypothetical cases for prostate and head-and-neck cancer photon beam treatment plans were calculated using Attila and EGSnrc Monte Carlo simulations. Open beams were modeled as isotropic photon point sources collimated to specified field sizes. The sources had a realistic energy spectrum calculated by Monte Carlo for a Varian Clinac 2100 operated in a 6-MV photon mode. The Attila computational grids consisted of 106,000 elements, or 424,000 spatial degrees of freedom, for the prostate case, and 123,000 tetrahedral elements, or 492,000 spatial degrees of freedom, for the head-and-neck cases.

RESULTS: For both cases, results demonstrate excellent agreement between Attila and EGSnrc in all areas, including the build-up regions, near heterogeneities, and at the beam penumbra. Dose agreement for 99% of the voxels was within the 3% (relative point-wise difference) or 3-mm distance-to-agreement criterion. Localized differences between the Attila and EGSnrc results were observed at bone and soft-tissue interfaces and are attributable to the effect of voxel material homogenization in calculating dose-to-medium in EGSnrc. For both cases, Attila calculation times were <20 central processing unit minutes on a single 2.2-GHz AMD Opteron processor.

CONCLUSIONS: The methods in Attila have the potential to be the basis for an efficient dose engine for patient-specific treatment planning, providing accuracy similar to that obtained by Monte Carlo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app