Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibitor of differentiation 4 drives brain tumor-initiating cell genesis through cyclin E and notch signaling.

Genes & Development 2008 August 2
Cellular origins and genetic factors governing the genesis and maintenance of glioblastomas (GBM) are not well understood. Here, we report a pathogenetic role of the developmental regulator Id4 (inhibitor of differentiation 4) in GBM. In primary murine Ink4a/Arf(-/-) astrocytes, and human glioma cells, we provide evidence that enforced Id4 can drive malignant transformation by stimulating increased cyclin E to produce a hyperproliferative profile and by increased Jagged1 expression with Notch1 activation to drive astrocytes into a neural stem-like cell state. Thus, Id4 plays an integral role in the transformation of astrocytes via its combined actions on two-key cell cycle and differentiation regulatory molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app