JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hemodynamic responses to simulated weightlessness of 24-h head-down bed rest and KAATSU blood flow restriction.

The KAATSU training is a unique method of muscle training with restricting venous blood flow, which might be applied to prevent muscle atrophy during space flight, but the effects of KAATSU in microgravity remain unknown. We investigated the hemodynamic responses to KAATSU during actually simulated weightlessness (6 degrees head-down tilt for 24 h, n = 8), and compared those to KAATSU in the seated position before bed rest. KAATSU was applied to the proximal ends of both the thighs. In the seated position before bed rest, sequential incrementing of KAATSU cuff pressure and altering the level of blood flow restriction resulted in a decrease in stroke volume (SV) with an increase in heart rate (HR). KAATSU (150-200 mmHg) decreased SV comparable to standing. Following 24-h bed rest, body mass, blood volume (BV), plasma volume (PV), and diameter of the inferior vena cava (IVC) were significantly reduced. Norepinephrine (NOR), vasopressin (ADH), and plasma renin activity (PRA) tend to be reduced. A decrease in SV and CO induced by KAATSU during the simulated weightlessness was larger than that in the seated position before bed rest, and one of eight subjects developed presyncope due to hypotension during 100 mmHg KAATSU. High-frequency power (HF(RR)) decreased during KAATSU and standing, while low-frequency/high-frequency power (LF(RR)/HF(RR)) increased significantly. NOR, ADH and PRA also increased during KAATSU. These results indicate that KAATSU blood flow restriction reproduces the effects of standing on HR, SV, NOR, ADH, PRA, etc., thus stimulating a gravity-like stress during simulated weightlessness. However, syncope due to lower extremity blood pooling and subsequent reduction of venous return may be induced during KAATSU in microgravity as reported in cases of lower-body negative pressure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app