Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Cytotoxicity of etidronic acid to human breast cancer cells.

INTRODUCTION: Bisphosphonates have been used to treat Paget's disease, osteoporosis, and cancer metastases to the bone. The cancer chemotherapeutic potential of a first-generation bisphosphonate, etidronic acid, was evaluated by using MCF-7 human breast cancer cells.

METHODS: In vitro cytotoxicity of etidronic acid to MCF-7 cells was estimated on the basis of clonogenicity assays, while cell cycle effects were determined by using flow cytometry. Mutagenicity of etidronic acid was detected by using denaturing high-pressure liquid chromatography analysis of cellular DNA amplified by PCR with primers for exons 5 through 8 of the human p53 gene.

RESULTS: A 24-hour treatment with etidronic acid (10 mM) with or without strontium chloride was cytototoxic to MCF-7 cells. Etidronic acid caused a decrease in the S-phase population and an increase in the G2/M population. Mutations in the p53 gene were detected in MCF-7 cells treated with etidronic acid. Strontium chloride was not cytotoxic to cells.

CONCLUSIONS: Cytotoxicity of etidronic acid to breast cancer cells may complement its inhibitory effects on bone resorption at the site of bone metastasis. Within the cell cycle, late S-phase cells are the most radioresistant, while cells at the G2/M border are the most sensitive. Therefore the decrease in S-phase population with corresponding increase in G2/M would make the cells more radiosensitive. This may be useful if etidronic acid were combined with radioactive strontium (89Sr, metastron) or external-beam radiotherapy for treating bone metastases. Tumor cells that survive etidronic acid treatment may acquire drug resistance because of mutations in the p53 tumor-suppressor gene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app