JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Down-regulation of cardiac lineage protein (CLP-1) expression in CLP-1 +/- mice affords.

In order to understand the transcriptional mechanism that underlies cell protection to stress, we evaluated the role of CLP-1, a known inhibitor of the transcription elongation complex (pTEFb), in CLP-1 +/- mice hearts. Using the isolated heart model, we observed that the CLP-1 +/- hearts, when subjected to ischaemic stress and evaluated by haemodynamic measurements, exhibit significant cardioprotection. CLP-1 remains associated with the pTEFb complex in the heterozygous hearts, where as it is released in the wild-type hearts suggesting the involvement of pTEFb regulation in cell protection. There was a decrease in Cdk7 and Cdk9 kinase activity and consequently in phosphorylation of serine-5 and serine-2 of Pol II CTD in CLP-1 +/- hearts. However, the levels of mitochondrial proteins, PGC-1alpha and HIF-1alpha, which enhance mitochondrial activity and are implicated in cell survival, were increased in CLP-1 +/- hearts subjected to ischaemic stress compared to that in wild-type CLP-1 +/- hearts treated identically. There was also an increase in the expression of pyruvate dehydrogenase kinase (PDK-1), which facilitates cell adaptation to hypoxic stress. Taken together, our data suggest that regulation of the CLP-1 levels is critical to cellular adaptation of the survival program that protects cardiomyocytes against stress due collectively to a decrease in RNA Pol II phosphorylation but an increase in expression of target proteins that regulate mitochondrial function and metabolic adaptation to stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app