Add like
Add dislike
Add to saved papers

Multiple product inhibition and growth modeling of clostridium butyricum and klebsiella pneumoniae in glycerol fermentation.

The inhibition potentials of products and substrate on the growth ofClostridium butyricum and Klebsiella pneumoniae in the glycerol fermentation are examined from experimental data and with a mathematicalmodel. Whereas the inhibition potential of externally added and self-produced 1,3-propanediol is essentially the same, butyric acid produced by the culture is more toxic than that externally added. The same seems to apply for acetic acid. The inhibitory effect of butyric acid is due tothe total concentration instead of its undissociated form. For acetic acid, it cannot be distinguished between the total concentration and the undissociated formThe inhibition effects of products and substrate in the glycerol fermentation are irrespective of the strains, and, therefore, the same growth model can be used. The maximum product concentrations tolerated (critical concentrations C(*) (pi)) are 0.35 g/Lfor undissociated acetic acid, 10.1 g/L for total butyric acid, 16.6 g/L for ethanol, 71.4 g/L for 1,3-propanediol, and 187.6 g/L for glycerol, which are applicable to C. butyricum and K. pneumoniae grown under a variety of conditions. For 55 steady-states, which were obtained from different types of continuous cultures over a pHrange of 5.3-8.5 and under both substrate limitation and substrate excess, the proposed growth model fits the experimental data with an average deviation of 17.0%. The deviation of model description from experimental values reduces of 11.4% if only the steady-states with excessive substrate are considered. (c) 1994 John Wiley & Sons, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app