JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Insulin acts as a powerful stimulator of axial myopia in chicks.

PURPOSE: In animal models, it has been shown that the retina can use the defocus of the projected image to control emmetropization. Glucagon may be involved in the sign of defocus detection, at least in chickens. Since glucagon and insulin often have opposite effects in metabolic pathways, the effect of insulin on eye growth was investigated.

METHODS: Chicks were treated with either positive or negative spectacle lenses and intravitreally injected with saline or different amounts of insulin. Refraction, axial length, and corneal curvature were measured. Effects of insulin on vitreal glucose concentration, on retinal ZENK and glucagon mRNA levels, and on the number of ZENK-immunoreactive glucagon amacrine cells were studied.

RESULTS: Insulin injections (0.3 nmol) caused only a small myopic shift in control chicks. When positive lenses were worn, insulin injections (0.3; 0.03 nmol) not only blocked hyperopia but rather induced high amounts of axial myopia. Insulin also enhanced myopia that was induced by negative lenses. Axial elongation was mostly due to an increase in anterior chamber depth and a thickening of the crystalline lens. Insulin temporarily reduced vitreal glucose levels. Insulin increased retinal ZENK mRNA levels, whereas the number of ZENK-immunoreactive glucagon amacrine cells was reduced, a finding that is typically linked to the development of myopia.

CONCLUSIONS: Given that insulin is used in therapy for human metabolic disorders and has been proposed to treat corneal epithelial disease, its powerful myopiagenic effect, which is mostly due to its effects on the optics of the anterior segment of the eye, merits further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app