Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil.

Heavy metals in variable charge soil are highly bioavailable and easy to transfer into plants. Since it is impossible to completely eliminate rice planting on contaminated soils, some remediation and mitigation techniques are necessary to reduce metal bioavailability and uptake by rice. This pot experiment investigated the effects of seven amendments on the growth of rice and uptake of heavy metals from a paddy soil that was contaminated by copper and cadmium. The best results were from the application of limestone that increased grain yield by 12.5-16.5 fold, and decreased Cu and Cd concentrations in grain by 23.0%-50.4%. Application of calcium magnesium phosphate, calcium silicate, pig manure, and peat also increased the grain yield by 0.3-15.3 fold, and effectively decreased the Cu and Cd concentrations in grain. Cd concentration in grain was slightly reduced in the treatments of Chinese milk vetch and zinc sulfate. Concentrations of Cu and Cd in grain and straw were dependent on the available Cu and Cd in the soils, and soil available Cu and Cd were significantly affected by the soil pH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app