Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Inhibiting metalloproteases with PD 166793 in heart failure: impact on cardiac remodeling and beyond.

Metalloproteinases (MMPs, also called matrixins) are extracellular proteolytic enzymes involved in the degradation of both matrix and nonmatrix proteins. Currently, 25 MMPs have been identified in humans, and the overexpression of one or more MMPs has been implicated in several pathologies, spanning from cancer to rheumathoid arthritis to cardiovascular disease. While research over the past 20 years has focused on understanding MMP biology and selectively inhibiting MMP activity, key issues that remain to be addressed include MMP roles in the context of normal versus pathological conditions and whether globally inhibiting MMPs improves or deteriorates overall organ function. In terms of cardiovascular disease, increased MMP expression has been demonstrated in the setting of myocardial ischemia, reperfusion injury, and during the progression to congestive heart failure. MMPs are also major contributors to the progression of atherosclerotic lesions. In this review, we focus on cardiovascular effects produced by PD 166793, a wide-broad spectrum MMP inhibitor, originally developed by Parke-Davis (now Pfizer). We will briefly review its structure, mechanism of action, and inhibitory capacity. Finally, we will illustrate the cardiac contexts, both in vivo and in vitro, in which PD166793 administration has proven beneficial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app