Add like
Add dislike
Add to saved papers

Organized formation of 2D extended covalent organic frameworks at surfaces.

The development of nanoscale masking for particle deposition is exceedingly important to push the future of nanoelectronics beyond the current limits of lithography. We present the first example of ordered hexagonal covalent nanoporous structures deposited in extended arrays of near monolayer coverage across a Ag(111) surface. The networks were formed from the deposition of the reagents from a heated molybdenum crucible between 370 and 460 K under ultrahigh vacuum (UHV) onto a cleaned Ag(111) substrate and imaged using a scanning tunneling microscope (STM). Two surface covalent organic frameworks (SCOFs) are presented; the first is formed from the deposition of 1,4-benzenediboronic acid (BDBA) and its dehydration to form the boroxine-linked SCOF-1, the second is formed from the co-deposition of BDBA and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) to form a dioxaborole-linked SCOF-2 network. The networks were found to produce nanoporous structures of 15 A for SCOF-1 and 29 A for SCOF-2, which agreed with theoretical pore sizes determined from DFT calculations. Both SCOFs were found to have exceptional thermal stability, maintaining their structure until approximately 750 K, which was found to be the polymer degradation temperature from thermal gravimetric analysis (TGA).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app