English Abstract
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

[Effect and mechanism of Epimedium flavanoids for aging retardation from viewpoint of transcriptomics and metabonomics].

OBJECTIVE: To investigate the effect and its mechanism of Epimedium flavanoids (EF) in retarding aging with different systematic viewpoints.

METHODS: Hypothalamus, pituitary, adrenal and lymphocytes taken from 4-, 10-, 18-, 24-month old rats and from EF treated 24-month old rats were used to measure whole genome mRNA expression by gene array. Serum samples were used for metabonomic assay with high performance liquid chromatography. Using specific gene chip for NF-kappaB signaling pathway to detect the gene expression of the molecule related to that pathway in lymphocytes. Then, a neural network (NN) model was established upon the data obtained to quantitatively evaluate the degree of aging and the efficacy of drug intervention.

RESULTS: Gene expression of 199 genes showedan age-dependent pattern, most of which were reversed by EF, and the output of NN model showed that EF made the transcriptomics of 24-month old rats to 8-13 months. Seventeen metabolites among the 1,885 peaks detected were identified to have significant age-depending changes, and EF intervention reset the level of metabolites to a younger (18-month) level. The integral level of gene expression for NF-kappaB signaling pathway decreased significantly along with the increasing of age, and was significantly elevated by EF, NN model showed it approached to 10.5-month old.

CONCLUSION: Phenotype of aging at different levels demonstrates a common age-dependent trend; EF can reverse this age-dependent change at different levels in a synchronous manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app