CASE REPORTS
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Sustained low-efficiency dialysis with filtration (SLEDD-f) in the management of acute sodium valproate intoxication.

Hemodialysis is only infrequently used in drug overdosage situations. The efficacy of hemodialysis to remove the drug depends upon the pharmacokinetics and pharmacodynamics of the drug. At normal therapeutic concentrations, valproic acid is predominantly protein bound and therefore removal by hemodialysis is limited. In an overdose situation, protein binding is rapidly saturated and therefore the substantially larger quantities of the free drug can rapidly cause toxicity. Slow low-efficient daily diafiltration (SLEDD) has not previously been utilized in a drug overdose situation. We report the effective use of SLEDD to remove high toxic concentrations of valproic acid in an overdose situation. Slow low-efficient daily diafiltration also prevented the rebound phenomenon that can occur as the excess drug is released from its protein-bound stores. Hybrid dialysis therapies deserve further evaluation in the management of other poisonings where extra-corporeal therapy is indicated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app