JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Contrasting cytoskeletal regulation of MHC class II peptide presentation by human B cells or dendritic cells.

MHC class II-mediated antigen presentation by B lymphocytes or dendritic cells (DC) initiates CD4+ T lymphocyte activation. In B lymphocytes, MHC class II peptide presentation has been characterised by recruitment of MHC class II, F-actin and lipid rafts to the B cell-T cell immunological synapse. We now show that MHC class II engagement in B lymphocytes induced lipid raft-independent Rho and Rac activation and that inhibition of either Rho-GTPase activation or actin polymerisation in the B cell abrogated T cell activation without altering B cell-T cell conjugate formation. Short-hairpin RNA studies excluded a role for the Cdc42 effector Wiskott-Aldrich syndrome protein. In contrast, antigen presentation by DC was Rho-GTPase-independent although actin was recruited to the DC-T cell interaction site. Moreover, actin depolymerisation in the DC significantly increased T cell activation without altering the number of DC-T cell conjugates. Finally we show that stable recruitment of HLA-DR to the site of the immunological synapse is not a uniform observation in DC and demonstrate reduced HLA-DR expression at the site of microtubule organising centre polarization. Therefore although actin accumulates in DC and B lymphocytes at the immunological synapse with antigen-specific T lymphocytes, this does not reflect comparable functional roles of their actin cytoskeletons in antigen presentation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app