Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The action of extracellular NAD+ in the liver of healthy and tumor-bearing rats: model analysis of the tumor-induced modified response.

The chronic inflammatory state induced by cancer is expected to affect the actions of extracellular NAD(+) in the liver because these are largely mediated by eicosanoids. Under this assumption the present work was planned to investigate the influence of the Walker-256 tumor on the action of extracellular NAD(+) on metabolism and hemodynamics in the perfused rat liver. The experiments were done with livers from healthy and tumor-bearing rats with measurements of gluconeogenesis from lactate, pyruvate production, oxygen consumption and portal pressure. A model describing the biphasic effects of NAD(+) was proposed as an auxiliary worktool for interpretation. The Walker-256 tumor modified the responses of metabolism to extracellular NAD(+) by delaying the peak of maximal responses and by prolonging the inhibitory effects. The transient increase in portal perfusion pressure caused by NAD(+) was enhanced and delayed. The model was constructed assuming the mediation of a down-regulator (inhibition), an up-regulator (stimulation) and receptor dessensitization. Analysis suggested that the productions of both the down- and up-regulators were substantially increased and delayed in time in the tumor-bearing condition. Since the regulators are probably eicosanoids, this analysis is consistent with the increased capacity of producing these agents in the chronic inflammatory state induced by cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app