JOURNAL ARTICLE
VALIDATION STUDY
Add like
Add dislike
Add to saved papers

Biomechanical analysis of fracture healing in guinea-pigs.

To validate the hypothesis that healing of fractures can be accelerated by oral administered L-arginine a guinea-pig model was chosen. A diaphyseal defect fracture was established in the right femur of each of the 32 small animals and stabilized. According to randomization groups the oral administration was realized (2 or 4 weeks medication / solvent). The following biomechanical variables were measured after 4 weeeks in 32 right femora and the corresponding uninjured left femora. The measurement for the healed femur was individually compared with that of the uninjured femur in each animal; bending, force (necessary for refracture) and energy (necessary for refracture). To apply the bending moment in a measurable and reproducible way each end of the femur was secured using a special device. For each femur a strain/momentum graph of the measurements and the essential parameters were drawn (stiffness, end of the linear range, and failure-point). The bending moment was always applied with the same loading rate. The following three variables were used for the biomechanical evaluation; bending stiffness, force until failure and energy necessary for refracture. The bending stiffness reached 73% by the control group and 88% by the 4-week treatment group. The force necessary for refracture was 52% in the control compared with 65% in the 4-week treatment group. The energy necessary for refracture was 36% in the control compared with 73% in the group treated for 4 weeks. The 2 week treatment group showed no statistical significant differences to the control, but the femora from the 4 week treatment group required statistically significant higher energy for refracture than the femora from the control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app