ENGLISH ABSTRACT
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

[Electron microscopic detection and in situ characterization of bacterial nanoforms in extreme biotopes].

Mikrobiologiia 2008 January
The morphology, ultrastructure, and quantity of bacterial nanoforms were studied in extreme biotopes: East Siberia permafrost soil (1-3 Ma old), petroleum-containing slimes (35 years old), and biofilms from subsurface oil pipelines. The morphology and ultrastructure of microbial cells in natural biotopes in situ were investigated by high-resolution transmission electron microscopy and various methods of sample preparation: ultrathin sectioning, cell replicas, and cryofractography. It was shown that the biotopes under study contained high numbers of bacterial nanoforms (29-43% of the total number of microorganisms) that could be assigned to ultramicrobacteria due to their size (diameter of < or =0.3 microm and volume of < or =0.014 microm3) and structural characteristics (the presence of the outer and cytoplasmic membranes, nucleoid, and cell wall, as well as their division patterns). Seven different morphostructural types of nanoforms of vegetative cells, as well as nanospores and cyst-like cells were described, potentially representing new species of ultramicrobacteria. In petroleum-containing slimes, a peculiar type of nanocells was discovered, gram-negative cells mostly 0.18-0.20 x 0.20-0.30 microm in size, forming spherical aggregates (microcolonies) of dividing cells in situ. The data obtained promoted the isolation of pure cultures of ultramicrobacteria from petroleum-containing slimes; they resembled the ultramicrobacterium observed in situ in their morphology and ultrastructure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app