Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Stress-induced mobility of OPHIO1 and OPHIO2, DNA transposons of the Dutch elm disease fungi.

The mobility of transposable elements (TEs) can contribute to genome plasticity, under- or over-expression of genes and ectopic recombination. The data collected in this study provide evidence of stress-induced mobility of OPHIO1 and OPHIO2 transposons, recently detected in Ophiostoma ulmi and O. novo-ulmi, the causal agents of Dutch elm disease (DED). The analyses of OPHIO UTRs and TIRs indicated the presence of two potential binding site motifs and a heat shock protein (hsp) promoter which could be involved in the mobility of OPHIO1 following a heat shock stress. The exact position of the hsp promoter was determined by 5' RACE PCR. After confirmation of the expression by RT-PCR of both OPHIO1 and OPHIO2 transposases in the absence of stress factors, we tested two experimental procedures to induce mobility of OPHIO TEs: (1) an exogenous (cloned) copy of OPHIO1 was introduced into the O. novo-ulmi subsp. americana strain W2 (OPHIO1 free strain) to give mutant strain W2:OPHIO1. After exposure of W2:OPHIO1 to a 55 degrees C heat shock treatment, some of the survivors showed signs of incomplete transposition (excision without reinsertion) of OPHIO1. (2) The O. novo-ulmi subsp. novo-ulmi strain AST27, introgressed from O. ulmi and carrying a distinct endogenous copy of OPHIO2 (OPHIO2-int.), was subjected to a series of abiotic stress treatments. Although a promoter sequence could not be identified, both exposures to UV light and to a 4 degrees C cold treatment caused perfect excision of OPHIO2-int. In contrast to OPHIO1, heat shock stress did not induce OPHIO2-int. mobility. Taken together, these results allow us to hypothesize a potential interspecific invasion of OPHIO transposons due to their mobility in Ophiostoma spp.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app