Add like
Add dislike
Add to saved papers

No evidence for effects of mild microwave irradiation on electrophysiological and morphological properties of cultured embryonic rat dorsal root ganglion cells.

Effects of mild microwave treatment (1 hr, 37 degrees C) on the in vitro development of rat mechanically dissociated dorsal root ganglion (DRG) neurons were investigated to establish whether microwave irradiation effects exist on nervous tissue other than heat induced tissue fixation. Phase contrast microscopy and immunocytochemical neurofilament stainings did not reveal significant differences between irradiated (2 hr after isolation) and control cultures, maintained up till 21 days. The electrophysiological properties of microwave exposed and non-exposed DRG neurons were compared using the whole-cell patch-clamp technique. Control neurons, in culture for 0-12 days, were excitable. In cultured cells (1-12 days), microwaved 2 hr after isolation, the action potentials were similar to or slightly different from those of the control cells. No acute microwave effects were found on neurons irradiated after 1 day of culture. These results suggest that mild microwave irradiation has neither significant acute nor strong long-term effects on DRG culture development and DRG neuron membrane properties, consistent with the notion that microwave effects essentially are temperature effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app