Add like
Add dislike
Add to saved papers

Edaravone prevents Fas-induced fulminant hepatic failure in mice by regulating mitochondrial Bcl-xL and Bax.

Shock 2008 August
Fulminant hepatic failure is a serious disease that has a poor cure rate unless liver transplantation is performed. Edaravone, a free radical scavenger, has been approved for the treatment of acute cerebral infarction, and its mechanism of action involves scavenging free radicals generated in ischemic tissues. We assessed the ability of 3-methyl-1-phenyl-2-pyrazolim-5-one (edaravone) to prevent Fas-induced acute liver failure in mice and examined the mechanisms underlying the observed effects. BALB/c mice were administered 0.25 microg/g (i.v.) body weight of a purified hamster agonist anti-Fas monoclonal antibody (clone Jo2). The mice also received either edaravone or isotonic sodium chloride solution before or after Jo2 treatment. Edaravone improved the survival rate of the mice markedly. Histopathological findings and serum aspartate aminotransferase levels showed that edaravone reduced the degree of liver injury caused by Jo2. Terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling staining showed that edaravone reduced the number of apoptotic hepatocytes. Edaravone also prevented cytochrome c release and caspase 3 activity, recognized as markers of apoptosis after mitochondrial disruption. Therefore, we considered that the antiapoptotic activity of edaravone involved blocking signals in the mitochondria-dependent pathway of Fas-induced apoptosis. Mitochondrial Bcl-xL and Bax, which form a channel in the mitochondrial membrane and, by their balance, regulate its permeability, are involved in mitochondrial disruption. Western blotting showed that the Bcl-xL-Bax ratio of the edaravone group was much higher than that of the control group. In conclusion, edaravone might protect hepatocytes from Fas-induced mitochondria-dependent apoptosis by regulating mitochondrial Bcl-xL and Bax.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app