Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

New algorithm using only lead aVR for differential diagnosis of wide QRS complex tachycardia.

BACKGROUND: We recently reported an ECG algorithm for differential diagnosis of regular wide QRS complex tachycardias that was superior to the Brugada algorithm.

OBJECTIVE: The purpose of this study was to further simplify the algorithm by omitting the complicated morphologic criteria and restricting the analysis to lead aVR.

METHODS: In this study, 483 wide QRS complex tachycardias [351 ventricular tachycardias (VTs), 112 supraventricular tachycardias (SVTs), 20 preexcited tachycardias] from 313 patients with proven diagnoses were prospectively analyzed by two of the authors blinded to the diagnosis. Lead aVR was analyzed for (1) presence of an initial R wave, (2) width of an initial r or q wave >40 ms, (3) notching on the initial downstroke of a predominantly negative QRS complex, and (4) ventricular activation-velocity ratio (v(i)/v(t)), the vertical excursion (in millivolts) recorded during the initial (v(i)) and terminal (v(t)) 40 ms of the QRS complex. When any of criteria 1 to 3 was present, VT was diagnosed; when absent, the next criterion was analyzed. In step 4, v(i)/v(t) >1 suggested SVT, and v(i)/v(t) < or =1 suggested VT.

RESULTS: The accuracy of the new aVR algorithm and our previous algorithm was superior to that of the Brugada algorithm (P = .002 and P = .007, respectively). The aVR algorithm and our previous algorithm had greater sensitivity (P <.001 and P = .001, respectively) and negative predictive value for diagnosing VT and greater specificity (P <.001 and P = .001, respectively) and positive predictive value for diagnosing SVT compared with the Brugada criteria.

CONCLUSION: The simplified aVR algorithm classified wide QRS complex tachycardias with the same accuracy as standard criteria and our previous algorithm and was superior to the Brugada algorithm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app