Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Normoxic ventilatory resuscitation following controlled cortical impact reduces peroxynitrite-mediated protein nitration in the hippocampus.

OBJECTIVES: Ventilatory resuscitation with 100% O2 after severe traumatic brain injury (TBI) raises concerns about the increased production of reactive oxygen species (ROS). The product of peroxynitrite-meditated tyrosine residue nitration, 3-nitrotyrosine (3-NT), is a marker for oxidative damage to proteins. The authors hypothesized that posttraumatic resuscitation with hyperoxia (100% fraction of inspired oxygen [FiO2] concentration) results in increased ROS-induced damage to proteins compared with resuscitation using normoxia (21% FiO2 concentration).

METHODS: Male Sprague-Dawley rats underwent controlled cortical impact (CCI) injury and resuscitation with either normoxic or hyperoxic ventilation for 1 hour (5 rats per group). Twenty-four hours after injury, rat hippocampi were evaluated using 3-NT immunostaining. In a second experiment, animals similarly underwent CCI injury and normoxic or hyperoxic ventilation for 1 hour (4 rats per group). One week after injury, neuronal counts were performed after neuronal nuclei immunostaining.

RESULTS: The 3-NT staining was significantly increased in the hippocampi of the hyperoxic group. The normoxic group showed a 51.0% reduction of staining in the CA1 region compared with the hyperoxic group and a 50.8% reduction in the CA3 region (p < 0.05, both regions). There was no significant difference in staining between the injured normoxic group and sham-operated control groups. In the delayed analysis of neuronal survival (neuronal counts), there was no significant difference between the hyperoxic and normoxic groups.

CONCLUSIONS: In this clinically relevant model of TBI, normoxic resuscitation significantly reduced oxidative damage to proteins compared with hyperoxic resuscitation. Neuronal counts showed no benefit from hyperoxic resuscitation. These findings indicate that hyperoxic ventilation in the early stages after severe TBI may exacerbate oxidative damage to proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app