Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Myosin light chain kinase inhibition: correction of increased intestinal epithelial permeability in vitro.

PURPOSE: To examine whether myosin light chain kinase (MLCK) inhibitors can reduce intestinal epithelial permeability increases in vitro.

MATERIALS AND METHODS: Isolated rat, mouse and human colonic tissue mucosae and Caco-2 monolayers were exposed to cytochalasin D (cD) and sodium caprate (C10), in the absence and presence of the MLCK inhibitors, ML-9 and D PIK. Transepithelial electrical resistance (TEER) and Papp of [14C]-mannitol or FITC-dextran 4000 (FD-4) were measured. Western blots were used to measure MLC phosphorylation.

RESULTS: Increases in Papp of [14C]-mannitol and decreases in TEER were induced by tight junction openers. These changes were attenuated by ML-9. D-PIK offset the FD-4 Papp increase induced by C10 in Caco-2 only, while ML-9 and PIK inhibited MLC directly, cD induced constriction of peri-junctional actin in Caco-2 monolayers, but this was prevented by ML-9. Although mannitol fluxes across colonic mucosae from dextran-sulphate (DSS)-treated mice were higher than control, they were not ameliorated by either ML-9 or PIK in vitro.

CONCLUSIONS: ML-9 inhibits paracellular permeability increases in several intestinal epithelial models. D-PIK reduced stimulated paracellular fluxes in Caco-2 monolayers, but not in tissue. Pre-established increases were not modified by two MLCK inhibitors in a mouse model of IBD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app