Journal Article
Review
Add like
Add dislike
Add to saved papers

Lipids, lipoproteins, and peroxisome proliferator activated receptor-delta.

Peroxisome proliferator activated receptors (PPARs) are nuclear receptors activated by small, lipophilic compounds. Typically resident on nuclear DNA, full activation requires heterodimer formation with retinoid X receptor and ligand binding, leading to modulation in the expression of hundreds of genes. Of the 3 described forms, (PPAR-alpha, PPAR-gamma, and PPAR-delta), PPAR-delta has been the least investigated. Preclinical in vitro data show that activation of PPAR-delta, like PPAR-alpha, results in enhancement of fatty acid oxidation, leading to increased energy production in the form of adenosine triphosphate and of energy uncoupling. Microarray data in preclinical models suggest substantial PPAR-delta expression in skeletal muscle. Exercise, which induces upregulation of PPAR-delta in muscle tissue, leads to an increased requirement for an external or serum derived triacylglycerol energy source. This suggests that upregulation of skeletal muscle PPAR-delta would influence lipoprotein composition, this being the major source of combustible substrate. In the first human study using a PPAR-delta agonist, experimental data obtained with GW 501516 (a highly specific PPAR-delta agonist) suggested that upregulated enzymes critical to fatty acid oxidation in human cells enhanced fatty acid and beta-oxidation in skeletal muscle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app