EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

A loose-fit coculture of activated keratinocytes and dendritic cell-related cells for prediction of sensitizing potential.

Allergy 2007 December
Protection against contact allergy begins with the collection of reliable data about the sensitizing potential of chemicals. Today, the local lymph node assay (LLNA) in mice is widely used to identify sensitizing substances. For several reasons, an in vitro assay could be preferable to animal experiments. We propose an in vitro test for the detection of a sensitizing potential of a chemical composed of a single layer of human nondifferentiating keratinocytes and of allogenic floating monocytes which are cocultured in serum-free medium in the presence of a cytokine cocktail. Within days, the coculture develops to an allergen- sensitive system consisting of activated keratinocytes and of mobile dendritic cell-related cells (DC-related cell). The sensitizing potential can be determined by analyzing the expression of the dendritic cell maturation marker CD86. For the model contact allergens tested so far [trinitrobenzenesulfonic acid (TNBS), phenylendiamine, and 4-aminoacetanilide], the strength of the reaction was in concordance with results from the LLNA. Sensitivity of the assay allowed testing at concentrations without general cytotoxicity. Thus, a differentiation between allergens and irritants was possible. Regarding cytokine secretion, the assay distinguished between the allergen TNBS and the Toll-like receptor ligand lipopolysaccharide. The coculture can be set up from cryopreserved cells. The assay is easy to perform and reproducible. Donor-variance is negligible. This in vitro assay based on a loose-fit coculture is a reasonable approach to screen for the sensitizing potential of xenobiotics and might partially replace the LLNA and other animal tests.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app