JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias.

Circulation 2007 November 14
BACKGROUND: Brugada syndrome is a rare, autosomal-dominant, male-predominant form of idiopathic ventricular fibrillation characterized by a right bundle-branch block and ST elevation in the right precordial leads of the surface ECG. Mutations in the cardiac Na+ channel SCN5A on chromosome 3p21 cause approximately 20% of the cases of Brugada syndrome; most mutations decrease inward Na+ current, some by preventing trafficking of the channels to the surface membrane. We previously used positional cloning to identify a new locus on chromosome 3p24 in a large family with Brugada syndrome and excluded SCN5A as a candidate gene.

METHODS AND RESULTS: We used direct sequencing to identify a mutation (A280V) in a conserved amino acid of the glycerol-3-phosphate dehydrogenase 1-like (GPD1-L) gene. The mutation was present in all affected individuals and absent in >500 control subjects. GPD1-L RNA and protein are abundant in the heart. Compared with wild-type GPD1-L, coexpression of A280V GPD1-L with SCN5A in HEK cells reduced inward Na+ currents by approximately 50% (P<0.005). Wild-type GPD1-L localized near the cell surface to a greater extent than A280V GPD1-L. Coexpression of A280V GPD1-L with SCN5A reduced SCN5A cell surface expression by 31+/-5% (P=0.01).

CONCLUSIONS: GPD1-L is a novel gene that may affect trafficking of the cardiac Na+ channel to the cell surface. A GPD1-L mutation decreases SCN5A surface membrane expression, reduces inward Na+ current, and causes Brugada syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app