Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-retinal barrier breakdown in diabetic retinopathy.

PURPOSE: Nitric oxide (NO) is involved in leukostasis and blood-retinal barrier (BRB) breakdown in the early stages of diabetic retinopathy (DR), but it is unclear which NO synthase (NOS) isoforms are primarily involved. In this study, the authors aimed to clarify the involvement of constitutive (eNOS, nNOS) and inducible NOS (iNOS) isoforms and the mechanisms underlying NO-mediated leukostasis and BRB breakdown.

METHODS: Diabetes was induced with streptozotocin for 2 weeks. Mice were treated with a NOS inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), which shows a preference for constitutive isoforms over iNOS. Vessel leakage was assessed with Evans blue. Leukostasis was quantified in flat-mounted retinas with confocal microscopy, in vivo with a scanning laser ophthalmoscope, and in vitro in a retinal endothelial cell line. ICAM-1, occludin, and ZO-1 levels were assessed by Western blot, flow cytometry, or immunohistochemistry. Nitrotyrosine content was assessed by immunohistochemistry.

RESULTS: Diabetes increased leukostasis within retinal vessels and BRB permeability, which were reduced by L-NAME. Similar effects were observed in diabetic iNOS knockout mice. In diabetic mouse retinas, ICAM-1 protein levels increased, whereas the immunoreactivity of tight junction proteins, occludin and ZO-1 decreased, in correlation with increased protein levels of all NOS isoforms. Those effects were prevented by L-NAME and also in diabetic iNOS knockout mice. High glucose and nitrosative/oxidative stress also increased leukostasis caused by ICAM-1 upregulation.

CONCLUSIONS: These results indicate that the iNOS isoform plays a predominant role in leukostasis and BRB breakdown. The mechanism involves ICAM-1 upregulation and tight junction protein downregulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app