JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification of the functional role of AF1Q in the progression of breast cancer.

A novel highly metastatic MDA-MB-231HM cells, derived from MDA-MB-231, was established in our institute. RT-PCR, real-time PCR and Western blot showed that AF1Q gene was differentially expressed between highly metastatic MDA-MB-231HM cells and its parental MDA-MB-231 cells. However, its molecular mechanisms in breast cancer metastasis remain to be characterized. To investigate the effects of AF1Q on the progression of human breast cancer cells, in the present study, recombinant expression plasmid vectors of the human AF1Q gene was transfected into MDA-MB-231 cells. We demonstrated that AF1Q overexpression enhanced the in vitro proliferation and invasive potential of breast cancer cells. Focused microarray analyses showed that 22 genes were differentially expressed between AF1Q transfected cells and its parental counterparts. Integrin alpha3, accompanied by up-regulation of Ets-1 and MMP-2, significantly enhanced the in vitro invasive potential of human breast cancer cells mediated by AF1Q. Estrogen-responsive ring finger protein gene (EFP), also played a role in the enhancement of in vitro proliferation of human breast cancer cells mediated by AF1Q, accompanied by down-regulation of 14-3-3delta. The association was ERalpha independent. These results were further demonstrated by RNA interference (RNAi) experiment in vitro. In in vivo study, we also demonstrated that AF1Q transfected breast cancer cells grew much faster and had more pulmonary metastases than vector-transfected or its parental counterparts. On the contrary, AF1Q knockdown cells grew slower and had less pulmonary metastasis. Similar effects of AF1Q on integrin alpha3, Ets-1, MMP-2, EFP, and 14-3-3delta expression observed in vitro studies were also found in the in vivo study. Taken together, these results provide functional evidences that overexpression of AF1Q leads to a more progression in human breast cancer, at least in part, through regulating the integrin alpha3, Ets-1, MMP-2, EFP, and 14-3-3delta expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app