Journal Article
Research Support, N.I.H., Intramural
Add like
Add dislike
Add to saved papers

Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1.

Journal of Cell Science 2007 November 2
We examined the role of the microtubule cytoskeleton in the localization and store-operated Ca(2+) entry (SOCE) function of the endoplasmic reticulum (ER) Ca(2+) sensor stromal interaction molecule 1 (STIM1) in HEK 293 cells. STIM1 tagged with an enhanced yellow fluorescent protein (EYFP-STIM1) exhibited a fibrillar localization that colocalized with endogenous alpha-tubulin. Depolymerization of microtubules with nocodazole caused a change from a fibrillar EYFP-STIM1 localization to one that was similar to that of the ER. Treatment of HEK 293 cells with nocodazole had a detrimental impact on SOCE and the associated Ca(2+) release-activated Ca(2+) current (I(CRAC)). This inhibition was significantly reversed in cells overexpressing EYFP-STIM1, implying that the primary inhibitory effect of nocodazole is related to STIM1 function. Surprisingly, nocodazole treatment alone induced significant SOCE and I(CRAC) in cells expressing EYFP-STIM1, and this was accompanied by an increase in EYFP-STIM1 fluorescence near the plasma membrane. We conclude that microtubules play a facilitative role in the SOCE signaling pathway by optimizing the localization of STIM1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app