JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural basis of disease-causing mutations in hepatocyte nuclear factor 1beta.

Biochemistry 2007 October 31
HNF1beta is an atypical POU transcription factor that participates in a hierarchical network of transcription factors controlling the development and proper function of vital organs such as liver, pancreas, and kidney. Many inheritable mutations on HNF1beta are the monogenic causes of diabetes and several kidney diseases. To elucidate the molecular mechanism of its function and the structural basis of mutations, we have determined the crystal structure of human HNF1beta DNA binding domain in complex with a high-affinity promoter. Disease-causing mutations have been mapped to our structure, and their predicted effects have been tested by a set of biochemical/ functional studies. These findings together with earlier findings with a homologous protein HNF1alpha, help us to understand the structural basis of promoter recognition by these atypical POU transcription factors and the site-specific functional disruption by disease-causing mutations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app