JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Neurodevelopmental impact of antiepileptic drugs and seizures in the immature brain.

Seizure incidence during the neonatal period is higher than any other period in the lifespan, yet we know little about this period in terms of the effect of seizures or of the drugs used in their treatment. The fact that several antiepileptic drugs (AEDs) induce pronounced apoptotic neuronal death in specific regions of the immature brain prompts a search for AEDs that may be devoid of this action. Furthermore, there is a clear need to find out if a history of seizures alters the proapoptotic action of the AEDs. Our studies are aimed at both of these issues. Phenytoin, valproate, phenobarbital, and MK801 each induced substantial regionally specific cell death, whereas levetiracetam even in high doses (up to 1,500 mg/kg) did not have this action. In view of our previously findings of neuroprotective actions of repeated seizures in the adult brain, we also examined repeated seizures for a possible antiapoptotic action in the infant rat. Rat pups were preexposed to electroshock seizures (ECS) for 3 days (age 5-7 days) before receiving MK801 on day 7. The effect of ECS, which was consistently a 30% decrease in MK801-induced programmed cell death (PCD), suggests that repeated seizures can exert an antiapoptotic action in the infant brain. In contrast, PCD induced by valproate was not attenuated by ECS preexposure, suggesting that valproate-induced PCD is mechanistically distinct from that induced by MK801 and may not be activity-dependent. Presently, we do not know if this neuroprotective effect of seizures is deleterious or beneficial. If the seizures also enhance the survival of neurons that are destined to undergo naturally occurring PCD, early childhood seizures may have deleterious effects by preventing this necessary component of normal development. While this effect of seizures might be counteracted by AEDs, the fact that several AEDs shift the PCD to the other extreme, and trigger excessive neuronal cell loss, raises concern about whether the drug therapy may be more detrimental than the seizures. In this context, it is encouraging that we have identified at least one AED that is devoid of a proapoptotic action in the infant brain, even in high doses. It is now important to evaluate the long-term consequences of the changes in PCD in infancy by examining behavioral outcomes and seizure susceptibility in the AED- and seizure-exposed neonates when they reach adulthood.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app