Add like
Add dislike
Add to saved papers

In vitro effects of calcium fructoborate on fMLP-stimulated human neutrophil granulocytes.

Discovery of naturally occurring boron complexes with organic compounds containing hydroxyl groups, sugars, and polysaccharides, adenosine-5-phosphate, pyridoxine, riboflavin, dehydroascorbic acid, and pyridine nucleotides led to the reassessment of the biochemical role of boron. Boron's anti-inflammatory actions were claimed but not yet demonstrated. This study investigated the effects of calcium fructoborate (CF) on the human polymorphonuclear neutrophils (PMN) that play a central role in the inflammatory response. Our results demonstrated that CF exposure induced a dose-dependent decrease in cell viability. Treatment of PMN cells, for 24 h, with 22,500 microM CF led to a decrease in cell viability by 61.1%, an inhibition of respiratory burst by 92.9% in the case of fMLP-stimulated cells, a diminution of intracellular level of superoxide anion with 59.3%, and a stimulation of superoxide dismutase activity by 72% in unstimulated PMN cells. Altogether, these results suggest the antioxidant and anti-inflammatory properties of CF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app