Add like
Add dislike
Add to saved papers

Adaptation of muscle fibre types and capillary network to acute denervation and shortlasting reinnervation.

We postulated that, in rat extensor digitorum longus muscle (EDL), the length of capillaries per fibre surface area (Lcap/Sfib) and per fibre volume (Lcap/Vfib) could reflect fibre-type transformations accompanied by changes in oxidative metabolic profile and selective fibre-type atrophy. We excised rat EDL muscle 2 weeks after the sciatic nerve was cut (acute denervation; DEDL) and 4 weeks after the nerve was crushed (early reinnervation; REDL) and characterised muscle fibre-type transformation by the expression of myosin heavy-chain isoforms and by succinate dehydrogenase (SDH) and nicotinoamide adenine dinucleotide-tetrazolium reductase (NADH-TR) reactions. The numerical percentage (N/N) and area percentage (A/A) of pure and hybrid fibres and their diameter were determined, as was the A/A of SDH- and NADH-TR-positive fibres. The length of capillaries per fibre length (Lcap/Lfib), Lcap/Sfib and Lcap/Vfib were estimated in REDL and Lcap/Vfib in DEDL. In DEDL, the type 2x and 2b fibres evidently atrophied, with the N/N of type 2x fibres being lower and that of hybrid fibres higher. In REDL, the N/N of hybrid fibres was even higher, consequent to a lower N/N of type 2b fibres; however, fibre diameters approached values of the control EDL. Compared with control EDL, denervated and reinnervated muscles exhibited a higher A/A of oxidative fibres. This is probably the result of fibre-type transformation and selective fibre atrophy. We conclude that capillary length does not change during acute denervation and early reinnervation. The obtained higher values of Lcap/Sfib and Lcap/Vfib are related to changes in muscle fibre cross-sectional area.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app