JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

Use of recombinant inbred strains to identify quantitative trait loci in psychopharmacology.

Unlike simple Mendelian characteristics, individual differences in complex quantitative phenotypes studied in psychopharmacology are generally distributed continuously and are likely to be influenced by many genes. Recombinant inbred (RI) strains are valuable not only for their traditional use of detecting major gene segregation and linkage but also for identifying associations between quantitative traits and quantitative trait loci (QTL) that account for relatively small amounts of variation in phenotypes as well as loci that account for greater amounts of variation. When applied to published data on genetic markers and on amphetamine, alcohol, and morphine responses in BXD RI strains (RI strains developed from the cross between C57BL/6J and DBA/2J progenitor inbred strains), the RI QTL approach identified several significant associations beyond known major gene effects. Together, significant associations explain more than half of the genetic variance for these measures. The RI QTL approach is especially valuable for investigating the QTL underpinnings of genetic correlations among measures. It is recommended that psychopharmacogenetic research focus on the BXD RI strains. The cumulative and integrative nature of such a program of research is the major benefit of the RI QTL association approach for molecular genetic analysis of psychopharmacological processes, their physiological infrastructure, and their interface with other behavioral and biological systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app