Add like
Add dislike
Add to saved papers

Elimination of current dissipation in high transition temperature superconductors.

Science 1990 January 20
The relaxation of the shielding current-induced magnetic moment in YBa(2)Cu(3)O(7) thin films, which were grown in situ, is studied as a function of temperature. Although typical relaxations cause a large amount of decay in the magnetic shielding current (on the order of 10 to 20 percent for the first 1000 seconds), it is shown that this is not necessarily a serious problem for applications such as magnets operating in persistent-current modes. This is because the decay of the magnetic shielding current depends sensitively on how far away the operating current density is from the critical current density J(c). By using a quenching process the shielding current is reduced slightly below J(c) and the relaxation is dramatically reduced. A general relation between the relaxation rate at J(c) and the reduction of the relaxation rate upon lowering of the operating current is obtained and is shown to be consistent with experimental data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app