Journal Article
Review
Add like
Add dislike
Add to saved papers

Oxygen sensing and hypoxia-induced responses.

Low cellular oxygenation (hypoxia) represents a significant threat to the viability of affected tissues. Multicellular organisms have evolved a highly conserved signalling pathway that directs many of the changes in gene expression that underpin physiological oxygen homoeostasis. Oxygen-sensing enzymes in this pathway control the activity of the HIF (hypoxia-inducible factor) transcription factor by the direct incorporation of molecular oxygen into the post-translational hydroxylation of specific residues. This represents the canonical hypoxia signalling pathway which regulates a plethora of genes involved in adaptation to hypoxia. The HIF hydroxylases have been identified in other biological contexts, consistent with the possibility that they have other substrates. Furthermore, several intracellular proteins have been demonstrated, directly or indirectly, to be hydroxylated, although the protein hydroxylases responsible have yet to be identified. This chapter will summarize what is currently known about the canonical HIF hydroxylase signalling pathway and will speculate on the existence of other oxygen-sensing enzymes and the role they may play in signalling hypoxia through other pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app