JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Scalaradial, a dialdehyde-containing marine metabolite that causes an unexpected noncovalent PLA2 Inactivation.

Several marine terpenoids that contain at least one reactive aldehyde group, such as manoalide and its congeners, possess interesting anti-inflammatory activities that are mediated by the covalent inactivation of secretory phospholipase A(2) (sPLA(2)). Scalaradial, a 1,4-dialdehyde marine terpenoid that was isolated from the sponge Cacospongia mollior, is endowed with a relevant anti-inflammatory profile, both in vitro and in vivo, through selective sPLA(2) inhibition. Due to its peculiar dialdehyde structural feature, it has been proposed that scalaradial exerts its enzymatic inactivation by means of an irreversible covalent modification of its target. In the context of our on-going research on anti-PLA(2) natural products and their interaction at a molecular level, we studied scalaradial in an attempt to shed more light on the molecular mechanism of its PLA(2) inhibition. A detailed analysis of the reaction profile between scalaradial and bee venom PLA(2), a model sPLA(2) that shares a high structural homology with the human synovial enzyme, was performed by a combination of spectroscopic techniques, chemical reactions (selective modifications, biomimetic reactions), and classical protein chemistry (such as proteolytic digestion, HPLC and mass spectrometry), along with molecular modeling studies. Unexpectedly, our data clearly indicated the noncovalent forces to be the leading event in the PLA(2) inactivation process; thus, the covalent modification of the enzyme emerges as only a minor side event in the ligand-enzyme interaction. The overall picture might be useful in the design of SLD analogues as new potential anti-inflammatory compounds that target sPLA(2) enzymes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app