Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hydrogen sulphide: a novel endogenous gasotransmitter facilitates erectile function.

INTRODUCTION: In a pilot study, we found that the novel gasotransmitter, hydrogen sulfide (H2S), had a vasodilatory and proerectile action on the cavernosum. In the present work, we explored the ability of the cavernosum to synthesize H2S and its mechanism on the cavernosal pathways.

AIM: To evaluate the physiopharmacological responses and mechanism in the erectile function of H2S in rabbit cavernosum.

METHODS: Rabbit corpus cavernosum (CC) smooth muscle tissue (N = 5) was homogenized and incubated with L-cysteine (10 mM) and pyridoxal 5'-phosphate (2 mM) to detect H2S formation. In isometric tension studies on rabbits (N = 12), the effect of sodium hydrogen sulfide (NaHS; stable H2S donor, 100 microM-3.2 mM) was evaluated on the relaxant and contractile pathways in the cavernous smooth muscle using standard pharmacological tools.

MAIN OUTCOME MEASURES: In vitro evidences for cavernosal H2S formation and proerectile pharmacological effects.

RESULTS: H2S was readily synthesized in the rabbit CC (2.1 +/- 0.4 nmol/mg protein). In organ bath studies, NaHS consistently relaxed the rabbit CC in a concentration-dependent manner. MDL 12,330A and 1-H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one inhibited the NaHS relaxation by 22.5% and 14.7%, respectively. All three enzyme inhibitors (aminooxyacetic acid [AOAA], beta-cyanoalanine [beta-CA], and DL-propargylglycine [PAG][1 mM]) markedly increased the noradrenergic contractile neurotransmission of CC strips to field stimulation with minimal reversal by cysteine (1 mM) indicating the possible inherent inhibition of the relaxant H2S formation. AOAA, beta-CA, or PAG had no significant effect on nitrergic relaxation of noradrenaline-precontracted CC strips.

CONCLUSION: These pioneering studies provide evidence for the endogenous formation of H2S and its proerectile relaxant effect on the cavernosum, with the possibility of involvement of the cyclic adenosine monophosphate pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app