Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Timing of therapeutic intervention determines functional and survival outcomes in a mouse model of late infantile batten disease.

Molecular Therapy 2007 October
Classical late infantile neuronal ceroid lipofuscinosis (cLINCL) is a monogenic disorder caused by the loss of tripeptidyl peptidase 1 (TPP1) activity as a result of mutations in CLN2. Absence of TPP1 results in lysosomal storage with an accompanying axonal degeneration throughout the central nervous system (CNS), which leads to progressive neurodegeneration and early death. In this study, we compared the efficacies of pre- and post-symptomatic injections of recombinant adeno-associated virus (AAV) for treating the cellular and functional abnormalities of CLN2 mutant mice. Intracranial injection of AAV1-hCLN2 resulted in widespread human TPP1 (hTPP1) activity in the brain that was 10-100-fold above wild-type levels. Injections before disease onset prevented storage and spared neurons from axonal degeneration, reflected by the preservation of motor function. Furthermore, the majority of CLN2 mutant mice treated pre-symptomatically lived for at least 330 days, compared with a median survival of 151 days in untreated CLN2 mutant controls. In contrast, although injection after disease onset ameliorated lysosomal storage, there was evidence of axonal degeneration, motor function showed limited recovery, and the animals had a median lifespan of 216 days. These data illustrate the importance of early intervention for enhanced therapeutic benefit, which may provide guidance in designing novel treatment strategies for cLINCL patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app