JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Sca-1(+) hematopoietic cell-based gene therapy with a modified FGF-2 increased endosteal/trabecular bone formation in mice.

Molecular Therapy 2007 October
This study assessed the feasibility of using an ex vivo stem cell antigen-1-positive (Sca-1(+)) cell-based systemic fibroblast growth factor-2 (FGF-2) gene therapy to promote endosteal bone formation. Sca-1(+) cells were used because of their ability to home to, and engraft into, the bone marrow cavity. The human FGF-2 gene was modified to increase protein secretion and stability by adding the bone morphogenic protein (BMP)-2/4 hybrid signal sequence and by mutating two key cysteines. Retro-orbital injection of Sca-1(+) cells transduced with a Moloney leukemia virus (MLV)-based vector expressing the modified FGF-2 gene into sub-lethally irradiated W(41)/W(41) recipient mice resulted in long-term engraftment, more than 100-fold elevation in serum FGF-2 level, increased serum bone-formation markers, and massive endosteal bone formation. In recipient mice showing very high serum FGF-2 levels (>2,000 pg/ml), this enhanced endosteal bone formation was so robust that the marrow space was filled with bony tissues and insufficient calcium was available for the mineralization of all the newly formed bone, which led to secondary hyperparathyroidism and osteomalacia. These adverse effects appeared to be dose related. In conclusion, this study provided compelling test-of-principle evidence for the feasibility of using an Sca-1(+) cell-based ex vivo systemic FGF-2 gene therapy strategy to promote endosteal bone formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app