JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes.

Oncogene 2008 January 11
Interleukin-6 (IL-6) is overexpressed and contributes to tumor cell growth in cholangiocarcinoma. Enforced IL-6 production can alter the expression of specific microRNAs (miRNAs) involved in tumor growth, and moreover can modulate expression of methylation-dependent genes. Thus, we assessed the methylation-dependent regulation of miRNA expression in human malignant cholangiocytes stably transfected to overexpress IL-6. The expression of the methyltransferases DNA methyltransferase enzyme-1 and HASJ4442 was increased by IL-6 overexpression, but was decreased by the methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR). Expression profiling identified seven miRNAs that were significantly downregulated by IL-6 overexpression (<0.4-fold) and upregulated (>2-fold) by 5-aza-CdR. One of these, miR-370, is embedded in a CpG island. Although 5-aza-CdR increased miR-370 expression by 2.1-fold in malignant cells, the expression in nonmalignant cells was unchanged. The oncogene mitogen-activated protein kinase kinase kinase 8 (MAP3K8) was identified as a target of miR-370, and its expression was decreased by 5-aza-CdR in cholangiocarcinoma cells. Overexpression of IL-6 reduced miR-370 expression and reinstated MAP3K8 expression in vitro as well as in tumor cell xenografts in vivo. Thus, IL-6 may contribute to tumor growth by modulation of expression of selected miRNAs, such as miR-370. These studies define a mechanism by which inflammation-associated cytokines can epigenetically modulate gene expression and directly contribute to tumor biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app