JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sensitizing HER2-overexpressing cancer cells to luteolin-induced apoptosis through suppressing p21(WAF1/CIP1) expression with rapamycin.

HER2 overexpression, which confers resistance to various therapeutic regimens, correlates with a poor clinical prognosis. In this study, we showed that luteolin, a naturally occurring flavonoid, is a potent stimulator of HER2 degradation. Luteolin effectively inhibited cell proliferation and induced apoptosis in HER2-overexpressing cancer cells. Furthermore, we found that low doses of luteolin up-regulated p21 expression and high doses of luteolin down-regulated its expression. Examination of the Akt/mammalian target of rapamycin (mTOR) signaling revealed that this signaling was only transiently inhibited by low doses of luteolin, which suggested that the inability to cause sustained Akt/mTOR inhibition may contribute to p21 induction and provide a survival advantage to HER2-overexpressing cancer cells. To test this hypothesis, we showed that the combined use of luteolin and mTOR inhibitor rapamycin prevented low doses of luteolin from inducing p21 expression, and HER2-overexpressing cancer cells would be sensitized toward luteolin-induced apoptosis. In addition, p21 small interfering RNA also increased the luteolin-induced cell death. In nude mice with xenografted SKOV3.ip1-induced tumors, luteolin significantly inhibited HER2 expression and tumor growth in a dose-dependent manner, and rapamycin further enhanced the effect of luteolin with a concomitant p21 inhibition. These results reveal an intriguing finding that suppressing p21 expression might have therapeutic implications and further suggest that combination of mTOR inhibitors may be a promising strategy to help increase the efficacy of preventive or therapeutic compounds against HER2-overexpressing tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app